
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Evaluating PBT Frameworks in OCaml

ABSTRACT
Property-based testing (PBT) is an effective way of finding bugs
in programs by automatically generating test cases to check user-
defined properties. It is especially powerful for testing functional
codebases, where it exploits immutability, purity, and the strong
typing information available. Although the PBT space contains
a wide variety of frameworks with a plethora of approaches to
generating inputs, there is a lack of tools that compare the effec-
tiveness of the frameworks. One such tool, ETNA [6], was recently
presented to empirically evaluate and compare PBT techniques
in various frameworks, focusing on the Haskell and Coq testing
ecosystems. This research extends ETNA to OCaml, replicating
case studies from the Haskell and Coq literature. We compare the
bug-finding capabilities of three popular QuickCheck-style OCaml
PBT frameworks as well as one AFL-based fuzzing approach and
describe current work in tackling constrained OCaml properties
via Coq by leveraging prior research on automatic generators for
QuickChick [3].

1 INTRODUCTION
Property-based testing was introduced and popularized in Haskell
through QuickCheck [1], allowing users to write executable speci-
fications of their code and have them checked on a large number
of automatically generated test cases. This approach is extremely
useful in ensuring software reliability by discovering edge cases
and unexpected behaviors that traditional unit testing might miss.

Various factors influence the effectiveness of PBT, such as the
quality of the properties, but arguably the most critical factor is
the variety of ways in which test cases are generated, which allows
property-based testing to gain its advantage over traditional test-
ing solutions and more accurately test the limits and edges of a
user’s code base. Many frameworks are inspired by QuickCheck,
which uses randomized generation, though alternatives like input
space enumeration and feedback-guided generation are also gaining
traction. The style of generation can significantly affect the result
of a PBT system. Even once a generation style is chosen, though,
there is a diverse variety of frameworks for users to choose from.
For example, Haskell has QuickCheck and Hedgehog; OCaml has
QCheck and Crowbar, to name a few, each with its own techniques
for dictating how inputs are generated.

Once the choice of framework and generation style is complete,
the user still has countless options to consider when writing their
generators. From input size to input shape to the values themselves,
the user must blindly experiment with several trials to find one
that best suits their task. Until recently, there were various existing
performance evaluations, but a lack of comparisons between evalu-
ations. ETNA introduced a system to empirically evaluate various
generators across different frameworks to allow users to finally
approach PBT solutions from a leveled playing field.

1.1 ETNA Background
A critical point of designing properties for PBT is preconditions.
For example, when testing a system of binary search trees, our

properties should only apply to valid BSTs, not arbitrary binary
trees. A simple solution is to follow the data definition of the tree
type to create an arbitrary binary tree, and then filter out those
that are not valid BSTs. Shi et al. [6] call this approach type-based,
as the generation of the test cases is guided by the type definition.
However, as the workload becomes more and more sophisticated,
this filtering approach falls apart. The chance of a random tree being
a valid red-black tree is far smaller. The chance of a random lambda
calculus expression being type-correct is even lower. This issue
gives rise to bespoke generators, designed with the preconditions
in mind to only generate valid test cases. As the input space grows
in complexity, this approach requires far more user ingenuity, so
many approaches lie between the poles of type-based and bespoke
generators.

To measure the effectiveness of a generator, ETNA uses the ap-
proach of mutation testing, which artificially injects user-defined
bugs (referred to as mutants) into the tested system and checks
how well the testing can detect them. A workload in ETNA contains
several properties to test, several mutants to test against, and a few
generators to compare against each other. A task in ETNA refers to
a single mutant applied to the source code and a single property
tested to find the mutant. It runs many different tasks with various
generators from different frameworks, collecting information on
how quickly the bug is found, if at all. It then creates visualiza-
tions of the relative effectiveness of these different generators by
generalizing the trial execution procedure.

1.2 Expansion to OCaml
This research expands ETNA’s domain to OCaml frameworks. In
Haskell, most PBT frameworks are almost syntactically identical
to QuickCheck [1], such as LeanCheck [4] and SmallCheck [5].
On the other hand, OCaml provides developers with a wide va-
riety of frameworks, with QCheck having a fully-implemented
QuickCheck-like monadic system of generators, Crowbar being a
simple wrapper to AFL’s backend, and Base_quickcheck leverag-
ing the Core standard library replacement. This diversity further
motivates the need for evaluation.

This expansion contains the same workloads introduced in the
original ETNA paper, implemented in OCaml using QCheck, Crow-
bar, and Base_quickcheck. Crowbar supports a fully random mode
and an AFL-powered mode, both of which are benchmarked. Iden-
tical type-based and bespoke generator implementations were com-
pared using properties of binary search trees, red-black trees, and
the simply-typed lambda calculus.

In addition, since Coq code can interface with OCaml code via ex-
traction, we implemented a semi-automatic shim for testing OCaml
properties using Coq’s QuickChick library [2]. Since past research
has shown that Coq’s support for inductive types can be used to
automatically generate generators for a given property [3], this also
opens the way for interesting future work in targeting OCaml pre-
conditions with automatically derived bespoke generators.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 RESULTS
Though ETNA supports changing the timing of tasks, we have kept
the timeouts consistent with the original ETNA paper at 60 seconds
per task. Each task is run on each generator 10 times with the results
averaged for consistency. The task bucket charts classify tasks
ranging from “solved instantly” to “unsolved” with progressively
lighter shades. Figure 1 shows the chart for an example generator
that solves 14 tasks within 0.1s but does not solve four other tasks
at all.

Figure 1: Example bucket chart, and the bucket ranges.

Figure 2: BST.
= QCheck, = Crowbar Fully-random,
= Crowbar AFL, = Base_quickcheck.

The first and second buckets for each framework represent
the bespoke and type-based generators respectively.

Figure 3: RBT

The results suggest that, for our relatively simple workloads,
Base_quickcheck outperforms the other frameworks in almost all
situations. For both the BST and RBT workloads, the bespoke gen-
erator first generated a list of key-value pairs and then piped them

Figure 4: STLC

through a correct insert function. In our testing, the sizing distribu-
tion for the trees was most optimal by default for Base_quickcheck.

For the other frameworks, we had to address and fine-tune im-
plementation details by hand to achieve optimal results. QCheck’s
size distribution was heavily bimodal, with many trees containing
one or two nodes, and most others containing several thousand.
Without manually tuning the sizing distribution it performed signif-
icantly worse. Similarly, Crowbar’s source has a hard-coded upper
size bound of 100; this causes its in-built list generator to only
generate useful (not padded with trailing zeros) lists of up to length
six due to its logarithmically scaling implementation, which could
not find the majority of the bugs. We re-implemented a list gen-
erator that used Crowbar’s bind operator to achieve lists of up to
length 33, which we used for our evaluation.

Our results show that AFL through Crowbar’s interface per-
formed the worst out of all frameworks by over one order of mag-
nitude. This is somewhat expected due to the simplicity of our
workloads: AFL’s instrumentation draws too much relative over-
head. To look into this, we locally explored AFL and found that its
instrumentation may not fully work through Crowbar. OCaml’s
AFL’s documentation shows an example that fuzzes a four-character
secret string. An OCaml program that used AflPersistent.run
found the secret nearly ten times faster than an identical one that
used Crowbar.add_test, suggesting a buggy implementation in
Crowbar.We have submitted this, as well as Crowbar’s earlier sizing
issue, for review.

3 ONGOINGWORK
All three presented workloads have properties with many relatively
simple edge cases. We plan on designing a workload with a more
complex or finite set of edge cases to see if AFL’s instrumentation
outperforms traditional PBT in such a situation.

We are also working on refining the pipeline allowing us to
run Coq’s QuickChick on OCaml properties via extraction. This
will not only let us benchmark QuickChick’s performance but will
also allow us to utilize Coq-exclusive inductive types to generate
generators which can rival bespoke ones [3]. This paper’s tooling
will allow us to quantitatively evaluate the Coq extraction overhead
and the "free" generators’ performances.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Evaluating PBT Frameworks in OCaml

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

REFERENCES
[1] Koen Claessen and John Hughes. 2011. QuickCheck: a lightweight tool for random

testing of Haskell programs. SIGPLAN Not. 46, 4 (may 2011), 53–64. https:
//doi.org/10.1145/1988042.1988046

[2] Leonidas Lampropoulos. 2018. Random Testing for Language Design. Ph. D. Dis-
sertation. University of Pennsylvania.

[3] Leonidas Lampropoulos, Zoe Paraskevopoulou, and Benjamin C. Pierce. 2017.
Generating good generators for inductive relations. Proc. ACM Program. Lang. 2,
POPL, Article 45 (dec 2017), 30 pages. https://doi.org/10.1145/3158133

[4] Rudy Matela Braquehais. 2017. Tools for Discovery, Refinement and Generalization
of Functional Properties by Enumerative Testing. Ph. D. Dissertation. University of
York.

[5] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. Smallcheck and
lazy smallcheck: automatic exhaustive testing for small values. SIGPLAN Not. 44,
2 (sep 2008), 37–48. https://doi.org/10.1145/1543134.1411292

[6] Jessica Shi, Alperen Keles, Harrison Goldstein, Benjamin C. Pierce, and Leonidas
Lampropoulos. 2023. Etna: An Evaluation Platform for Property-Based Testing
(Experience Report). 7, ICFP, Article 218 (aug 2023), 17 pages. https://doi.org/10.
1145/3607860

3

https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/1988042.1988046
https://doi.org/10.1145/3158133
https://doi.org/10.1145/1543134.1411292
https://doi.org/10.1145/3607860
https://doi.org/10.1145/3607860

	Abstract
	1 Introduction
	1.1 ETNA Background
	1.2 Expansion to OCaml

	2 Results
	3 Ongoing Work
	References

