
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Seedzer: A Full-Stack Pipeline for Fuzzing Deep Learning
Compilers
NIKHIL KAMATH, University of Maryland, USA
MILIJANA SURBATOVICH, University of Maryland, USA

This is an Undergraduate Abstract. Nikhil Kamath’s ACM Student Member Number is 4549354.

1 INTRODUCTION
Deep Neural Networks (DNNs) are becoming increasingly common, spanning different target
devices. Critically, neural networks must use hardware-specific optimizations to improve perfor-
mance and efficiency. Deep-learning (DL) compilers bridge the gap between the DNN software and
deployed hardware. DL compilers take a neural network model as input and output an optimized
representation for a specific architecture. Bugs in these compilers can slow outputted models to
unusable extents or result in unexpected prediction results compared to the initial model.
Fuzzing is a popular approach to finding bugs in DL compilers by generating test cases as

inputs and comparing outputs with some reference. Several tools have successfully found bugs in
TVM, a popular DL compiler with multiple optimization levels. However, all of these tools focus
on fuzzing a certain optimization level of TVM: NNSmith only generates high-level models, and
Tzer and TVMFuzz only fuzz the low-level optimization passes of TVM. We explore whether a
full-compile-stack fuzzing approach outperforms state-of-the-art fuzzing approaches.

We propose Seedzer, a novel pipeline that aims to close the disconnection between low-level and
high-level fuzzers. Seedzer aims to intelligently propagate NNSmith’s high-level model generation
to Tzer’s low-level fuzzing. We investigate the potential of Seedzer on TVM and compare it to Tzer
individually.

2 BACKGROUND
Apache TVM is a DL compiler designed to generate optimized low-level code for a variety of
hardware platforms for inputted deep-learning models [1]. It performs a variety of steps that
optimize the model both at the high- and low levels. At the high level, neural networks are
represented as computation graphs. TVM’s computation graph intermediate representation (IR)
is called Relay. The Relay IR is transformed into Tensor IR, during which TVM optimizes the
computation graph. These transformation passes may include passes that simplify the graph or
merge certain nodes into operations that may be easier to compute mathematically. Finally, the
Tensor IR is translated to a target IR (such as LLVM), performing target-specific optimizations. A
target-specific pipeline such as LLVM handles compilation from the target IR to machine code.
Due to the complexity of DL compilers, fuzzing is a common approach to automate test-case

generation. Fuzzing a DL compiler involves generating some model, compiling it, and asserting that
the compiled model performs equivalently to an oracle, such as the PyTorch interpreter. Several
works have explored the best ways to improve the coverage and bug-finding capabilities of DL
compiler fuzzers. NNSmith describes an approach that generates high-level models for various
deep learning frameworks and compilers [2]. NNSmith critically considers structural validity when
generating neural networks, only generating valid high-level models and minimizing floating-point
exceptions.

Authors’ addresses: Nikhil Kamath, University of Maryland, USA; Milijana Surbatovich, University of Maryland, USA,
nikhil.k123234@gmail.com.



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Nikhil Kamath and Milijana Surbatovich

A drawback that the NNSmith authors note is that low-level fuzzing approaches introduce several
times as many unique coverage paths as high-level fuzzers due to their operation on low-level
IRs, which contain operands that cannot be explicitly included at the high level. Tzer is one such
low-level fuzzer [3]. Tzer begins with a seed pool of low-level models and runs various optimization
levels on them, asserting that the model should perform equivalently regardless of how optimized
it is. More optimized models should also not perform slower than lesser optimized versions.

Tzer’s initial seed pool is an oversight that the paper does not discuss. Tzer is seeded with models
from the TVM model zoo, which only contains commonly used architectures such as VGG and
ResNet. We suspect that due to the popularity of these initial seeds, many of these optimization
paths are commonly encountered and are less likely to have unfixed bugs. We explore the benefits
of a diverse yet valid high-level neural network generator, NNSmith, to better seed the low-level
fuzzer to uncover uncommon optimization paths and IRs.

3 OUR APPROACH
One limitation of Tzer is that its effectiveness depends on the initial seed pool. Many optimizations
that low-level compilation introduces depend on certain high-level qualities of the seeds that may
not be present when simply randomly fuzzing them at the low level. Operator fusion combines
layers at the high level to create optimized, unique low-level operators.
Seedzer combines NNSmith’s model generation with Tzer’s low-level mutations. We modify

Tzer to take any arbitrary ONNX files as initial seeds, rather than its hard-coded seed pool. We
also program NNSmith to output its random, valid high-level neural networks as ONNX files. We
can then run a variety of heuristics to determine which of the high-level models we deem most
effective at finding bugs when fuzzed at the low level. These ONNX files can be loaded and lowered
into the Relay IR, TVM’s high-level intermediate representation, and used in Tzer’s initial seed
pool.

We ran NNSmith on Google Colab with Intel Xeon CPUs running at 2.20GHz. We ran Tzer locally
on the prebuilt Docker container provided in the Tzer artifact. Due to difficulties rebuilding both
tools, NNSmith used TVM v0.11, while Tzer used v0.8.
Seedzer implements a heuristic-based system to choose which high-level models are best to

propagate to Tzer. We have three heuristics prioritizing certain convolutional neural networks
(CNNs). The conv heuristic prioritizes 1x1 kernel convolutions, the conv3 heuristic prioritizes 3x3
kernel convolutions, and the conv5 heuristic prioritizes CNNs with 5x5 kernels or larger. These
three heuristics could be implemented as patches to NNSmith, forcing it to only generate models
according to the heuristic. We also had the small and big heuristics, which ran NNSmith with
uncapped size. The models were then downloaded locally and a script was run to sort models
according to the number of weights and layers they contained. Lastly, our basic heuristic ran
NNSmith with only the default parameters, allowing it to generate all models. Our heuristics were
arbitrarily chosen, though ongoing work is being done in a design-space exploration to find which
heuristics may lead to more fragile models.
Once the models were generated and sorted, their ONNX files were pushed to Tzer’s prebuilt

Docker container. We also pushed a script to the container that converted these ONNX models to
Relay and seeded Tzer. We could then run Tzer for ten-minute runs for each seed pool that each
heuristic generated. As a by-product of our multi-stage pipeline, we were not only able to find
bugs that Tzer’s fuzzing ran into but also bugs in the library functions we were using to load and
convert the ONNX models to Relay.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Seedzer: A Full-Stack Pipeline for Fuzzing Deep Learning Compilers 3

4 EVALUATION
Coverage is a standard metric for evaluating fuzzing techniques, measuring the code paths of the
target program that the fuzzing achieves. Higher coverage typically suggests that more unique
cases were tested. We outline the coverage of TVM and the number of bugs found by Seedzer. Our
coverage measurements were taken from Tzer’s instrumentation, though our true coverage may be
slightly higher due to the un-instrumented Relay model loading functions Seedzer uses.

Experiments were run using ten-minute fuzzing for all runs. Tzer was run with the default initial
seed pool, and then with the seed pools generated by each of our heuristics. As shown in Figure 1a,
the default Tzer seed pool resulted in the least coverage after ten minutes. Our heuristic-selected
seed pools from NNSmith all had higher coverage than the default seed pool, though the choice of
heuristic did not seem to make a substantial difference in coverage. A more thorough exploration
of which heuristics are more performant is ongoing.
Figure 1b shows the number of buggy test cases generated during each 10-minute run. We

also include a breakdown of which were segmentation faults, rather than inconsistencies or other
crashing cases. Only the basic heuristic outperformed the default seeding in the absolute number
of bugs encountered. It’s important to note that this is only a measure of the number of buggy
cases and is not the number of unique bugs found. The seed pools generated by the big and small
heuristics are not graphed as bugs in the Relay loader prevented them from running Tzer for all
ten minutes. We are still investigating the cause of this.

We have included a few bugs that we manually investigated in Appendix A, some of which have
recently been encountered in practice and posted by users on both the TVM forum and its GitHub.
In conclusion, our experiments demonstrate that Seedzer’s integration of NNSmith’s high-level
model generation with Tzer’s low-level fuzzing allows for a more comprehensive bug detection
process. Full-compiler fuzzing techniques are thus promising approaches for DL compilers.

(a) Coverage for each Tzer run. (b) Bug and SegV breakdown for each Tzer run.

Fig. 1. Quantitative results of the Seedzer pipeline.

5 FUTUREWORK
We are refining the pipeline to use a consistent version of TVM throughout, before re-running
Seedzer for a longer period and manually exploring the bugs. We are also working on a design space
exploration to more thoroughly investigate which heuristics suggest neural networks with more
fragile qualities. Lastly, we are exploring the possibilities of continuous full-compiler feedback,
with an epoch-based system that fuzzes the next epoch of Tzer with a seed pool generated based
on how the previous epoch’s coverage performed.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Nikhil Kamath and Milijana Surbatovich

REFERENCES
[1] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan Wang,

Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An automated end-to-end optimizing compiler
for deep learning, 2018.

[2] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming Zhang. Nnsmith: Generating
diverse and valid test cases for deep learning compilers. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS ’23. ACM, January 2023.

[3] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. Coverage-guided tensor compiler fuzzing with
joint ir-pass mutation, 2022.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Seedzer: A Full-Stack Pipeline for Fuzzing Deep Learning Compilers 5

A SAMPLE OF BUGS FOUND

Check failed: (!check_type.defined()) is false:
Expected Array[IntImm], but got relay.Constant

Type mismatch bug similar to https://github.com/apache/tvm/pull/5276

In particular dimension 4 conflicts: 55 does not match (int64)1.
The Relay type checker is unable to show the following types match.
In particular `Tensor[(1, 1, 19, 60, 1), bool]`
does not match `Tensor[(1, 1, 19, 60, 55), bool]`

Quantized convolution bug, similar to one found https://github.com/apache/tvm/issues/7878.

Check failed: (n.defined()) is false: Found null pointer node while traversing AST.
The previous pass may have generated invalid data.

An unsupported operator that should be supported, similar to https://discuss.tvm.apache.org/t/bug-
onnx-found-null-pointer-node-while-traversing-ast/14745.

Check failed: (false) is false: relay.concatenate requires
all tensors have the same shape on non-concatenating axes

A concatenation shape check fails on a valid model.

KeyError:'axes'

A bug in the loader affects some models from the big heuristic. This bug seems to be fixed in the
newest version of TVM.

tvm.error.OpNotImplemented: The following operators
are not supported for frontend ONNX: Trilu

An unimplemented function from TVM is perhaps not a bug but something to note.

https://github.com/apache/tvm/pull/5276 
https://github.com/apache/tvm/issues/7878
https://discuss.tvm.apache.org/t/bug-onnx-found-null-pointer-node-while-traversing-ast/14745
https://discuss.tvm.apache.org/t/bug-onnx-found-null-pointer-node-while-traversing-ast/14745

	1 Introduction
	2 Background
	3 Our Approach
	4 Evaluation
	5 Future Work
	References
	A Sample of bugs found

